All Postings (92)

2017

Taking stock! Physics

Subversive? Physics?

My Philosophy!

Scripts Beget Scripts

2016

Theoretical Physics. A Hobby.

Self-Referential Poetry

Silent Online Writing

'Are You Still Doing PKI?'

My Philosophy (?)

Impact of physics on my life

Not much happened in 2015

2015

Unspeakable

Self-Poetry

Farewell Posting ...

Hacking away...

Web Project - Status

We Interrupt ...

Poetry from Poetry

PKI-Status-Update

Life and Work

Definition: 'Subversive'

2014 in Books

Physics Postings

Engineering Postings

True Expert

2014

2014 - a Good Year

Physics or Engineering?

Engineering Links

What Is Art?

Bio

PKI FAQ

Google's Poetic Talents

Certificates and Heat Pumps

Nr. 5: A Mind-Altering Experience

Technet postings

WOP!

Pink Spaceship

radices = Roots!

IT Postings

Web Projects

Life, the Universe, and Everything

Uh-oh, No Posting in March

PKI Resources

PKI Issues

Subversive Work

Spam Poetry

A Career 'in Science'

Writing

On the Shoulders of Subversive Giants

Search Term Poetry

Facebook Art

2013 in Books

2013

Explain, Evaluate, Utilize

Technology

About Life-Form Elke Stangl

elkement and This Site

No. 3: Internet Apocalypso

Retrospection

Newsletter Resurrection

2012

For Free

Subversive Yearly Report

Is My Life a Cliché?

Indulging in Cliché

Torture Turning Trivia

Intermittent Netizen

Knowledge Worker...

Profile

Physics on the Fringe

Graduation Speech

The Element is Back!

Offline

Physics Links

2011

Not Funny

Calendar and Magic

Expert

In Need of a Deflector

About to Change

A Nerd's Awakening

For the Sake of Knowledge

2008

Profession Or True Calling?

No. 2: On Self-Reference

I Have No Clue About Art

Netizen

2007

The End

No. 1: On Subversion at Large

2005

Emergency Exit

Modern Networker

2004

The Scary Part

Exploring the Work Space

2003

Instead of a CV

Favorite Books

2002

Elke was here

Postings tagged with 'Science Communications', listed in descending order by creation date. All Postings shown.

I have been blogging 'seriously' about physics since 2012. My motivation has been a blend of jotting down notes on interesting things I've just found, conveying my decades-old fascination with some phenomena, trying my hands at popular science writing, and reporting on my own research.

Today I am asking myself - did I learn anything from that on a meta level? To read myself, I am re-arranging the list of my physics posts and sort them by topic and sub-topic. The list says it all, I think.

I wanted to write about quantum mechanics, but it seems I was always most intrigued by classical mechanics, statistical mechanics, and thermodynamics. The latter has become my true home in physics - which has come as a surprise to myself. Yes, thermodynamics is my specialization, but years ago I rather figured that this is my job, and I rather want to follow the latest news on quantum information and particle theory in my spare time. It turned out that I am more interested in history of physics and in the evolution of concepts that are now 'well known'.

My recurring meta-topic is that classical mechanics / thermo can be as interesting, 'geeky' if you wish, mathematically 'weird', and surprising as fields that seem to be more popular.

This list may remain a static snapshot. I am editing the chronological list of my physics posts here on the blog. This list might lseem to lack some of my more applied / engineering postings, re our heat pump system and data. These are here.

Thermodynamics and Statistical Mechanics

Concepts and foundations

Temperature: Random Thoughts on Temperature and Intuition in Thermodynamics
Time evolution of systems in phase space: On the Relation of Jurassic Park and Alien Jelly Flowing through Hyperspace.
Phase-space in depth: Hyper-Jelly – Again. Why We Need Hyperspace – Even in Politics.
Carnot’s efficiency, irreversibility, proof by contradiction, paradoxes: Re-Visiting Carnot’s Theorem.
Mathematics used in statistical mechanics: Spheres in a Space with Trillions of Dimensions.

Heat pump basics

Brief explanation, absolute temperature: Why Do Heat Pumps Pump Energy so Easily?
Coefficient of Performance of a heat pump: An Efficiency Greater Than 1?
Cross-check of numbers for a large heat pump system: Pumped Heat from the Tunnel
COP versus Performance Factor: How to Evaluate a Heat Pump’s Performance?
Energy accounting, economics: Heat Pump System Data: Three Seasons 2012 – 2015.

Heat transport

Heat conduction, diffusivity, latent heat: Ice Storage Challenge: High Score!
Heat conduction, heat equation: Temperature Waves and Geothermal Energy.
Heat diffusion length: Rowboats, Laser Pulses, and Heat Energy (Boring Title: Dimensional Analysis).

Simulations

Simple version, daily energy balances: More Ice? Exploring Spacetime of Climate and Weather.
Heat transport, energy balances. Simulations versus simple energy accounting: Ice Storage Hierarchy of Needs.
Detailed version: Heat exchangers, heat equation, 1-minute time slots: Simulating Peak Ice.

Thermodynamics and energy basics, dimensional analysis

kW and kWh. No, You Cannot ‘Power Your Home’ by One Hour of Cycling Daily.
Phase transitions, ideal gas law (pressure sensor) Mr. Bubble Was Confused. A Cliffhanger.
kWp, power, energy, energy flow: On Photovoltaic Generators and Scattering Cross Sections.

History and inventions

Einstein’s Refrigerator and other inventions: Einstein and His Patents
Centennial light bulb, sustainability: 111 Years: A Shining Example of Sustainable Product Development?
Checking 19th century papers: Peter von Rittinger’s Steam Pump (AKA: The First Heat Pump).
Phase transitions of water, Mpemba effect: A Sublime Transition.
By an Austrian start-up – pressure gradient created by centrifugal forces: And Now for Something Completely Different: Rotation Heat Pump!

(I realize that some of my articles in the 'engineering' category would also qualify for this sub-category History. For example: I wrote a - less detailed - post on Rittinger's steam pump before. But part of the fun with these list is that you have to take those hard decisions of tagging ...)

Classical Mechanics and Fluid Dynamics

Equations of motion and Lagrangian formalism

Principle of Least Action. Sniffing the Path (On the Fascination of Classical Mechanics)
Equation of motion, intuition in physics: Are We All Newtonians?
Motion of a falling slinky spring: The Falling Slinky and Einstein’s Elevator.
Principle of Least Action, again – extended version: Space Balls, Baywatch and the Geekiness of Classical Mechanics.
From Newton’s Law to Navier-Stokes Equations: Non-Linear Art. (Should Actually Be: Random Thoughts on Fluid Dynamics).

Energy basics

Estimates related to the physics of scything: Grim Reaper Does a Back-of-the-Envelope Calculation.
Back-of-the-envelope cross-checks, hydro power: All Kinds of Turbines.

Rotations

Torque, forces, precession, nutation. The Spinning Gyroscope and Intuition in Physics.
Another way to explain how the gyroscope works: Intuition and the Magic of the Gyroscope
Coriolis force (1): The Twisted Garden Hose and the Myth of the Toilet Flush:
Coriolis force (2). Lest We Forget the Pioneer: Ottokar Tumlirz and His Early Demo of the Coriolis Effect.

Physics and geometry

My first (later corrected) proposal of a solution: Physics / Math Puzzle: Where Is the Center of Mass?
Correcting my earlier proposal: Revisiting the Enigma of the Intersecting Lines and That Pesky Triangle.
Newton’s geometrical proof of Kepler’s laws: Mastering Geometry is a Lost Art.

Quantum Mechanics and Quantum Field Theory

Interpretations of quantum mechanics: Is It Determinism if We Can Calculate Probabilities Exactly?
Quantum Mechanics versus QFT: Quantum Field Theory or: It’s More Than a Marble Turned into a Wiggly Line. 
Started a series: And Now for Something Completely Different: Quantum Fields!
Summary on QM: May the Force Field Be with You: Primer on Quantum Mechanics and Why We Need Quantum Field Theory
Quantization – starting from statistical mechanics: On the Relation of Jurassic Park and Alien Jelly Flowing through Hyperspace.
Path integrals and symmetries: Learning Physics, Metaphors, and Quantum Fields.
Book review: Student Friendly Quantum Field Theory.

Relativity

Electromagnetism and special relativity Unification of Two Phenomena Well Known.
Charged particles lose energy when accelerating: Why Fat Particles Radiate Less.
An alternative way of understanding SR: How to Introduce Special Relativity (Historical Detour).
List of resources: Learning General Relativity.

Using physics-like methods in economics and sociology

Networking theory, instabilities: Theory and Practice of Trying to Combine Physics with Anything
E-Mails and communications: Using Social Media in Bursts. Is. Just. Normal.

‘Philosophical’: Learning physics, culture

On trying to explain physics without math: Real Physicists Do Not Read Popular Science Books
Re The Trouble with Physics by Lee Smoli:. I neither Met Newton nor Einstein
On learning physics. Stupid Questions and So-Called Intuition.
Re Margaret Wertheim’s Physics on the Fringe Physics Paradoxers and Outsiders.
Physics as Therapy (1) In Praise of Textbooks with Tons of Formulas (or: The Joy of Firefighting).
Physics as Therapy (2) Ploughing Through Theoretical Physics Textbooks Is Therapeutic.

elkement is looking back (May 2017)

I have just published a similar, but conciser article on my Wordpress blog. As usual, I try to provide useful information over there, where I just follow my stream of consciousness here.

I have written about all things physics for a long time - mainly on my blog, since 2012 – but I have never been quite satisfied with the result: Too boring for experts, not exciting and popular science-y enough for the 'educated public'. I think the reason was my hidden agenda, an agenda not even obvious to myself.

I wrote about phenomena and subfields I had just immersed myself and (re-)learned about, either because this was very remote from what kind of physics I use on a daily basis, or just because I was concerned with some aspect of it but wanted to complement that with 'more theory' for the fun of it.

In spite of that, I tried to keep a style that somewhat resembles your typical 'science communications', but that was most likely to no avail. Re-reading my old blog posting I don't read so much about 'the physics' as about my own learning process. Or I remember what I actually wanted to write about, but did not – in order to violate the pop-sci agenda - so the result was something in between a learner's notes and sketches of ideas for popular presentations. For example, I (re-)learned Quantum Field Theory after all the news about the Higgs particle and LHC. Both my experimental and theoretical background was in condensed matter physics, so it really took me a while to map what I learned about so-called Second Quantization and many body systems (described in a non-relativistic way) onto your typical QFT introduction that started with Noether's Theorem and Lorentz transformations. Now in order to drive that point home (in a blog posting), to explain what was so interesting for me, I would have had to introduce all those concepts to a lay audience which I considered futile. Or I was just too lazy to learn more LaTex or too hesitant to use equations at all. I noticed, I got on all sorts of tangents when I tried to run a series on QFT – I did exactly what I did not like myself about popular texts on theoretical physics: Pontificate on more or less palpable metaphors about fields and waves, but not being able to really explain anything above a certain threshold of abstractness.

I gave up on my series before I could 'explain' what interested me most: How forces translate into the exchange of virtual particles and how I actually knew about the 'Higgs field giving particles mass' without knowing any more: I had learned about Andersen's mechanism in solid state physics, and Ginzburg-Landau theory of superconductivity. Perhaps that would have been a great example of symmetry breaking and that infamous sombrero hat potential typically used in pop-sci articles about the Higgs field?

I absolutely know that this may sound totally opaque – which is the reason why I only write about it here, on my website in that forgotten corner of the web, rather than trying to turn this into a blog post. Here, I follow my stream of consciousness and don't bother anybody on social media with it. There, I try to be somewhat entertaining and useful.

But even here, I try to write about something that somebody somewhere might be able to relate to, and here 'the internet' comes to rescue: For better or for worse, no matter how seemingly unique, special, and eclectic your hobbies and professional specializations, are – there is somebody somewhere on the net who indulges in the same combination of stuff. So, yes: It seems there is a growing community of hobbyist physics enthusiasts who feel the same and who 'practice' physics in the same way: Professionals with a STEM background who seriously learn about physics in their spare time, like R;&D managers writing textbooks about undergraduate physics or introductions about Quantum Field Theory. Like the IT server admin or the management consulting who write blog posts about what they have (re-)learned in their sparse spare time. Like the retired IT specialists who returns to what they originally studied – physics. Like me, who has an education mainly in applied condensed matter physics and who works as a consulting engineer and IT consultant.

From a down-to-earth perspective, this hobby can be worthwhile and useful: I noticed that it sharpens the mind, even if I don't use that physics and math directly on a daily basis. It's this effect that is makes the hackneyed saying about the 'analytical skills' of physics majors true. However, there is a caveat: Yes, physicists may be good at any corporate job, but I think not to lose you 'analytical edge' you need to practice the skills that originally shaped your mind. I don't know about research in psychology, so this is just my personal anecdotal experience. Living the corporate, inbox- and interrupt-driven work-style and having your mind scattered and distracted my social media does not help. There was a time in my life when I got up at 4:00 AM every day to re-learn physics, starting with Feynman's Physics Lectures. Surprisingly, that investment was well spent. I felt, my IT security concepts become crisper, more concise, and better – and it took me less time to compile them; So the ROI was great.

What triggered this article is my prime example of useful mathematical: While I had some background in QFT there was one subfield in physics I had missed completely: the theory called 'most beautiful', even by sober authors Landau and Lifshitz – the theory of General Relativity (GR). I had specialized in solid state physics, lasers, optics, and high-temperature superconductors, and GR was not a mandatory subject.

But I wanted at least to understand a bit about current research and those issues with not being able to unify quantum (field) theory and relativity. And I can relate to poor consumers of my feeble attempts at pop-sci physics: When I read popular physics books, I enjoy them as long as I have some math background - although I feel sometimes flowery metaphors make it more difficult to recognize something you actually know in terms of math. But when you would have to use new mathematical concepts you cannot understand the metaphors at all. Digression: So it baffles me when people like articles about Black Hole, the universe, and curved spaces but complain about not perfectly comprehensible explanations of more mundane physics and engineering. I believe the reason is that you 'need not' understand worm-holes etc.; so can just relax and scroll through the story, much like watching an illogical science-fiction movie. But mechanical engineering and simple thermodynamics feels like you 'should know it' and 'try a bit harder to understand it', and so it brings back memories of school and tests.

But as I said, there might be small community of people who genuinely want to learn, despite – or because of!! – the so-called hard aspects: Going through mathematical derivations again and again, and banging your head against the wall, until suddenly you understand. Which is a reward in itself, a feeling that's hard to share, and could and should not be shared anyway – in an act of subversive protest against our culture of craving for attention and 'likes'.

So for this community I'd like to share the resources I have picked for learning General Relativity: A set of free resources, each one complete and much more than just 'lecture notes'. Each of them also represents a different philosophy and pedagogical style, and I believe physics is learned best by using such a diverse set of resources.

One can debate endlessly, if and how to introduce the mathematical foundations used in some subfield in theoretical physics. As a physics major, you learn analysis and linear algebra before tackling its applications in physics and/or some mathematical tools are introduced as you go (Hello, Delta function!). I think it does not make such a difference in relation to the first courses in theoretical physics, e.g. learning about vector analysis before or in parallel to solving Maxwell's equations.

I feel it is more difficult the more advanced the math and the physics get, as you have to keep a lot of seemingly abstract concepts in mind, before you finally are presented with what 'you actually use that'. But maybe it is just me: Different presentations of GR seem 'more different to me' than different presentations of special relativity and electromagnetism.

In GR you can insist on presenting a purely mathematical and rigorous introduction of mathematical foundations first – your goal being to erase all false allusions and misguided 'intuitive' mental connections. Thinking about vectors in a 3D 'engineering math' way might harm your learning about GR just as too creative science writing might put false metaphors in your mind.

On the other hand, you could start from our flat space (our flat spacetime) and try to add new concepts bit by bit, for example trying to point out what curvature in 4D spacetime means for curvature in the associated 3D space, and what we might be able to measure.

Some authors use a mixed approach: They starting with a motivational chapter on experiments, photons in an elevator, and co-ordinate transformations in special relativity … and then they leave all that for a while to introduce differential geometry axiomatically … until they are back to apply this something tangible … until more mathematical concepts are again needed.

Sean Carroll does the latter in his Lecture Notes on General Relativity, that are actually much more than notes. He also published a brief No-Nonsense Introduction to GR that serves as a high-level overview, and he manages to keep to his signature conversational tone that makes his writings to enjoyable. Perhaps – if this was the only literature used – the mixed presentation plus digressions into special topics and current questions in physics would be a bit confusing.

But I was still searching for video lectures to complement any written text. A few years ago, I have not found any comprehensive self-contained course, but in 2015 this series of lectures was published, recordings from an event called the Heraeus Winter School on Gravity and Light 2015 – marking the 100th anniversary of Einstein's publication of GR. A nostalgic factoid I found most intriguing: The central lecture of the course by Frederic P. Schuller was given in the very lecture hall at my Alma Mater (Johannes Kepler University of Linz in Austria – JKU) that I received my education in Theoretical Physics, by Heisenberg's last graduate student Wilhelm Macke. Tutorial sheets and video recordings of tutorial sessions can be found on the conference website.

Schuller focuses on the math first, and this was really enlightening and helpful after I used other resources based on mixed intuitive physics and math. The Youtube channel of the event also has recordings of Tutorial sessions, and I found some versions of brief lecture notes. I think this is a must – and unfortunately often overlooked or downplayed in the world of free 'MOOCs'- In order to learn math really, you need to do problems and you absolutely have to walk through every single step of every derivation. It is tempting to just skip the boring proof in a text (that you thought you understood), and it is even more deceptive to watch science videos and believe you understood something. So thanks a lot to my former university to make this course available to the public.

But I was still curious if you can do without manifolds and stuff – without cheating – and I think I found the master of the genre. And again it is a signal from the past (my past): I had looked things up in Landau/Lifshitz Course of Theoretical Physics when I worked at the university. But as the 10 volumes were quite expensive I never bothered to purchase them later. Recently I jumped with glee: Due to whatever quirk in copyright law, the Internet Archive made 9 of 10 volumes available, and I downloaded them all. Browsing through table of contents I noticed that GR was actually explained in volume 2, The Classical Theory of Fields. I am totally smitten by their style, too: Elegant, terse, detached. Much like Dirac's Principles of Quantum Mechanics. And I don't agree with those who say that the explanations are too terse: Landau and Lifshitz try to stay to tangible physics, and they use math in an ingenious way, mathematicians might call it sloppy (like: 'dividing' by differentials to yield a derivative). For that reason, one should consult other resources as well, but I think LL's GR is self-contained.

These books and videos will keep with busy for a while. I also try to interlace it with a bit of QFT again, e.g. by reading Dirac's version of it. My goal for next year is to complete first courses on GR, recapitulate what bit of QFT I learned in 2013/14, and then tackle an actual former specialty again: Re-learning about theories of superconductivity, with an emphasis about how these methods are also used in particle physics.

It might be dangerous thing to announce such grand plans on the web. But next year might be a busy one business-wise, and need to braze myself accordingly.

Artist's concept of general relativity experiment. (Public domain - NASA - Wikimedia)

I start a radical experiment: Opening my blog's editor, and typing what I think right now  - however, planning to never publish it to WordPress.

Contrary to what seems to motivate many freshly minted bloggers, and netizens inhabiting social web worlds in general, feedback and interaction had not been my primary goal. The appeal of writing 'in public' is that on principle somebody could read what you wrote, that the internet never forgets, and that you have to hold yourself accountable to what you wrote. Have to endure reading what you wrote when you were a different being.

The joy of my early web projects was also their subversive, semi-secret, and pseudonymous nature. Online spaces were wild places, blank sheets of paper, laid before me to hone my ideas.

There is another motivation for writing online, and this is as unrelated as possible from the philosophical approach: I enjoy crafting technical arguments, documentation of technical projects, 'science writing' because I want to force myself to turn my thinking into a consistent linear thread. I want to challenge my own ideas, find the loop holes in my own arguments. I know that my blog articles may be either boring or opaque or both unless the reader has explicitly searched for content like that. But actually the latter audience is who I am perhaps writing for: I have found so much useful tech / science stuff online, for free and in sublime quality, for my professional work, my own education, my pleasure of reading - and I do not want to remain on the receiving end of this communication only.

My second motivation is tied to a minimum level of 'feedback' - page views by fellow geeks - only seems to work for my articles written on our German blog: We only blog about two times a month now, but despite the smaller theoretical audience of German speaking readers the other blog has much more views, and views are still increasing. My English blog has fallen in oblivion again after I blog only twice a month and/or after I focussed more and more on energy, heat pumps, and down-to-earth engineering and physics of everyday life.

These are my personal recent top articles in the Physics / History of Science category so far:

As for Engineering / providing how-to's and explanations for DIYers, I like those: And this is where Physics and Engineering meet, in a way I truly enjoy: When I blogged about quantum theory, basic and un-original as my articles might have been, my blog was 'viral' in comparison to that.

But ironically, a silent blog brings me closer to my other goal: Using the silent online space to write just for me, holding myself as accountable as possible though. Last year I had overhauled this / these website(s) here, and it turned more into a blog. Now I finally know what the purpose of having effectively two blog(-like) sites are:

Here, I give myself permission for introspection and self-centered updates. I don't share subversiv.at links anywhere on social media. If somebody wants to reads this, he or she really has to be determined and go to the 20th page of Google search results. There is no interaction. Of course this is also a consequence of my minimal web programming, but feedback can be blessing and curse. You (or maybe only: I) tend to write more about what 'people have liked before', or at least you feel a little bit guilty if you expose your loyal readers to something unusual - which turns each new post into a challenge, one you'd like to dodge sometimes. My writing self is quite 'authentic' here, in modern parlance.

But I don't want to appear fake on my real blog, the one that has much more content that this page, much more carefully crafted, and I don't want my blog to die. My solution has been - since a few months, I am only post-rationalizing now - to stay away from the autobiographical, from opinions, from philosophical, from big ideas ... and to focus on hard things. The stuff I do really know. I think The Internet would be a better place, if people would only post or comment if they 1) had through education on the subject, 2) practical experience with it, and 3) skin in the game - being personally exposed to risks and consequences arising from putting their opinions into practice. (In reverse order.)

So on my blog I just try to be useful (hopefully) to some tech and science enthusiasts, and perhaps a bit entertaining. If I will ever find a more useful 'spin' to what I have written here now, I might actually turn it into a blog article, like: What I learned from having two different websites. Why I stay away from opinion on the web. What I learned from tech / science blogging.

But for now this posting here will just remain some open-ended collection, snippets of my stream of consciousness, and I am copying these lines to a new 'post' at this silent website here and deleting the draft for a blog post.

I renamed my blog elkement.wordpress.com last November:

Theory and Practice of Trying to Combine Just Anything

became

elkemental Force

The original tagline was

Physics versus engineering
off-the-wall geek humor versus existential questions
IT versus the real thing
corporate world's strangeness versus small business entrepreneur's microcosmos, knowledge worker's connectedness
versus striving for independence.

until it became

I mean it

and finally turned into

Research Notes on Energy, Software, Life, the Universe, and Everything

This means that my blog elkement.wordpress.com has found its purpose, and I am able to distinguish blogging better from publishing to this website elkement.subversiv.at. My actual research and 'science writing' is featured on my blog. Over there I am using wordpress.com features I have no desire for developing them myself for - and this website will remain my 100% home-grown self-developed pseudo-blog with a very limited feature set and no interactivity. The blog has LaTex support and allows me to present galleries of technical figures and diagrams.

These recent blog articles showcase what elkemental Force has been and is covering now (the end of a journey that started already two years ago - when heat pumps and thermodynamics replaced quantum physics):

Rowboats, Laser Pulses, and Heat Energy (Boring Title: Dimensional Analysis)
How Does It Work? (The Heat Pump System, That Is)
Half a Year of Solar Power and Smart Metering

My personal website, on the other hand, should be just this: A more self-indulgent site that provides status updates, meta-information and About-Me-style summaries. Because of that I will keep not sharing articles here to any social network.

And so yes: The hands-on engineering, physics, math and data analysis will be done over there on the blog. But there really are personal meta-thoughts on physics - so I don't have to change categories here.

(Theoretical) Physics and Me

Over the Christmas holidays I have been nearly offline from social media. I used the internet as I believe it was intended for me: To learn about something in depth and not necessarily sharing my insights or my 'progress'. I indulged in theoretical physics lectures just for the joys of it. I can rationalize: Yes, a bit of mathy gymnastics also serves me well when I deal with more mundane physics as a professional - such as toying with the heat transport equation.

But the real reason is unrelated to work: Theoretical physics and mathematical modelling of a small part of a complex world gives me the pleasure - and/or the illusion - of being able to understand and solve, well, something. Whenever I had been very stressed out in the past, close to burn-out, I got up even earlier - as 4:00 AM sometimes - to plow through Feynman's Physics Lectures or my favorite German volumes of theoretical physics by my late professor, W. Macke.

Not only did it help me to focus onto abstract details of a logical clear universe and to enter a more detached state of mind, but amazingly it also made me work more efficiently and focused later - on whatever technical challenge I had to solve. In those days, I was mainly concerned with Public Key Infrastructure, networking security, and applied cryptography.

With hindsight - and hopefully not too much hindsight bias - I feel that a rigorous training in a mathy subject boosts your results in any endeavor that needs an analytical approach. Perhaps only your physics training makes your realize that you need a more analytical approach at all, in addition to soft skills, practice, and familiarity with culture in certain industry sectors. I am thinking about project management, for example.

I believe that in any 'STEM' job, e.g. in IT, it is soothing to re-learn fundamentals often. One should know more than seems necessary about 'theory', before or in addition to knowing how to google, where to look up things, or whom of your tech buddies to call. Success in technical troubleshooting always gave me most contentment when I was doing it in my head mainly - like walking through a networking protocol the way it was designed, comparing that to messing reality, and uttering an educated guess about the root cause of an issue which was finally correct.

Whenever I had been blogging about a field of physics not related to my work - like quantum field theory - it was these mental connections I had in mind. I was trying to convey the joys of physics, but my main focus was different from most science writers' ones, so I think my writing was not engaging enough for the interested lay audience and sometimes oblique owing to too much references to math (whereas it was very basic for experts, of course).

My science writing is often a covert and feeble attempt to encourage others to tackle the real thing, that is the fundamentals and the math, and then to feel the same effects. I have seen that more books seem to have been released recently that try to bridge this gap between classical science writing (following the mantra of: Every formula will half readers) and text books.

I want to be part of that movement.

Explaining science and technology is my passion and my mission - as a physicist, engineer and IT expert.

All children are curious scientists: We want to know 'how stuff really works'. However, in science education answers are finally given in the language of mathematics - which might kill curiosity.

I admit that I can indulge in math at times, just for the sake of it. Theoretical Physics was my personal therapy in fighting the detrimental impacts of having been sucked into Dilbert's (corporate) world once.

Nevertheless, I understand your discomfort - math haters / deniers. Fundamental theories in physics, such as string theory, seem to have developed a purely mathematical life of their own. Algorithms loom large: Corporations dig Big Data to predict our behaviors as consumers, and of course there is the NSA. And Facebook ads.

Thus I am determined to dissect and expound scientific underpinnings of, well of basically anything interesting I come across in physics, engineering or IT. As an IT consultant I sometimes gave stand-up quantum physics edutainment sessions in coffee breaks. So you are my target group: Experts in any science-y, geeky, technical or other quantitative field.

I am indecisive: shilly-shallying between excitement about curved space-time and multiverses on the one hand, and focusing on hands-on research and development from whose impacts we - taxpayers, John and Jane Does - will benefit in our lifetimes.

Currently my (science) writing is focused on

  • Quantum Field Theory. When the Higgs boson was discovered in 2012 I realized that I cannot make head or tail of how the Higgs field gives the other particles mass. Based on the theory of superconductivity and phase transitions I had once been exposed too - I actually should have. Thus I am set to (re-)learn QFT.
  • Thermodynamics - this is were fundamentals (entropy and the arrow of time) meet hands-on engineering (heat pumps).

And I am pondering on:

CV | Elkement's Blog

La Palma, mountains Cumbre Vieja.

Personal website of Elke Stangl, Zagersdorf, Austria, c/o punktwissen.
elkement [at] subversiv [dot] at. Contact and Legal Notice